应用

能量收集技术可用于为各种传感器和电子设备提供自主可再生能源,使其能够利用温差产生能量。利用效率越来越高的器件,将为充分利用热能收集的新解决方案铺平道路。

在可穿戴系统中,用于热能收集技术的一个有趣方法是利用热能来产生一些小电流,这实际上利用的是人体温度和环境温度之间的温度差。无论是在自然环境还是人工环境中,到处都存在温度差。利用这些温差或梯度都可以产生热电能。

热能

根据物理定律,系统的能量总是守恒的,只是能量有可能从一种形式转变为另一种形式。于是,从各种环境能源中获取能量是可能的。

在人们生活周围的环境中,充满了温度和热量的变化。发动机废料产生的热量、土壤产生的地热、钢铁厂冷却水产生的热量以及其他工业活动都是典型的例子。利用热电产生器(TEG)和其他一些电子设备,就可以把热能转化为电能,然后还可以将其保存在存储设备中。TEG的基本原理是热流(由温差引起)可以转换为电能。它非常适合体积通常非常小、并且没有运动部件的固态低功耗嵌入式设备。

塞贝克效应

塞贝克效应是当材料两侧之间存在温度梯度时产生电压的过程。TEG的基本元件是p-n结,它由热电材料p和n的单个结构组成,每个结构电气串联连接,并掺杂有硼(p)和磷(n)等杂质。

TEG模块的基本建构块是几个串联的p-n对。p-n对在此配置中平行排列,以产生与温度梯度成比例的电压。要正常工作,设备的热(Th)侧和冷(Tc)侧必须处于不同的温度。热电材料的性能(由热电优值ZT测得)由公式(1)给出:

ZT=S2T/σλ                (1)

式中,S是塞贝克系数,ρ是电阻率,λ是导热系数,而T是测量热电性能的温度。ZT测量在给定温度梯度下可以产生的电能量:材料的ZT值越高,其热电性能越好。通过增加功率因数PF(PF=S2÷ρ),或降低热导率λ(λ=λephλe和λph分别表示电子和声子贡献),都可以提高给定材料的热电性能。

塞贝克系数、电阻率和热导系数是决定热过程效率的三个因素。这三个既不同却又相互依存的物理特性,共同构建卓越性能。因此,很难或不可能在不损害另一个的情况下改进其中任何一个。唯一可以自由调节而不会对其他量产生影响的量是λph(T)。因此,缩小尺寸是提高整体效率的最有效的策略。

材料

基于电池的解决方案每天都在变得更小且更加有效。对于一些低功耗应用,如物联网传感器,再进一步提高电池寿命已不太可能。因此,这些设备将从能量收集技术中受益匪浅。对能量收集的兴趣引发了互补技术的发展,包括超低功率(皮瓦级)微电子和超冷凝。

一种优异的热电材料必须具有较强的塞贝克效应,导电性能应该尽可能地好,而导热特性则应该尽可能地差。很难找到一种符合所有这些要求的材料,因为导电性和导热性通常是齐头并进的。

研究人员最近成功开发了一种ZT值在5到6之间的新型材料。这种新材料由一层薄薄的铁、钒、钨和铝组成,应用于硅晶体,从而传感器电源行业可能会彻底改变,使传感器能够从环境中自行发电。

根据可用的温度梯度,TEG每平方厘米可以产生20µW到10mW的功率。

设计技巧

目前市场上已有几款适用于热能收集的集成电路,包括TI的BQ25570,能够从TEG中提取微瓦到毫瓦级的功率,还有e-peas的AEM10941,以及ADI和瑞萨的其他集成电路。BQ25570集成有电源管理系统,该系统通过使用双电路来提高电压,同时防止电池过充或爆炸。收集的能量可以存储到可充电锂离子电池、薄膜电池、超级电容器或传统电容器中。

超级电容器是有效应用能量收集的技术前提。它们是具有极高容量的电容器,同时具有电解电容器和充电电池的功能特性。然而,它们每单位体积或质量存储的能量比电解电容器多10倍,甚至是100倍,电荷累积速度远高于充电电池的典型速度,并且充放电循环次数比充电电池更多。

当TEG板之间存在足够的温差,从而在其端子上产生电压时,该过程开始。BQ25570包括一个升压充电器和一个纳米功率降压转换器(图2),它可以提取功率,功率大小根据温差而变化,从微瓦到毫瓦级不等。由于内置升压转换器,输出电压随后被升压到3.3V,效率可达到93%。

能量收集时,有两种方法可存储输入的能量:即使用电容器或电池来储存电荷。当使用传统电容器或超级电容器时,有一些指南可帮助设计师进行选择:

选择ESR低(<200mΩ)的电容器

1.2V时的泄漏电流必须小于1μA

大型电容器充电较慢,但可以存储大量电荷。另一方面,小型电容器充电非常快,增加了启动时间。

根据应用情况,电容器值可通过公式(2)求得:

C=15×VOUT×IOUT×TON                   (2)

其中,VOUT是能量收集传感器的输出电压,IOUT是来自能量收集传感器的平均输出电流,TON是IC接通时间。

如果传感器无法提供足够的功率,存储电容器将使系统维持一定时间。

热电能量收集器的功率调节也非常重要。即使在最大功率运行时,热电产生器的输出电压也很小,因为它的电压很低。当能量采集器给电池充电时,电源调节电路会保护电池不会过充电。同样,当温度变化时,功率调节用于稳定输出电压。

通过许多因素,包括输入阻抗、功率控制和滤波,调节电路在能量收集系统中起着至关重要的作用。传感器(无论是热源、光伏源还是振动源)、电源调节电路、微控制器和存储设备(超级电容器)都是最关键的部件。