铁氟龙PCB

主页/PCB/板材/铁氟龙PCB
铁氟龙PCB2019-09-20T11:09:18+08:00

行业新闻

PCB失效了?可能是这些原因导致的

PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。 随着电子信息产品的小型化以及无铅无卤化的环保要求,PCB也向高密度高Tg以及环保的方向发展。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题,并因此引发了许多的质量纠纷。为了弄清楚失效的原因以便找到解决问题的办法和分清责任,必须对所发生的失效案例进行失效分析。 失效分析的基本程序 要获得PCB失效或不良的准确原因或者机理,必须遵守基本的原则及分析流程,否则可能会漏掉宝贵的失效信息,造成分析不能继续或可能得到错误的结论。一般的基本流程是,首先必须基于失效现象,通过信息收集、功能测试、电性能测试以及简单的外观检查,确定失效部位与失效模式,即失效定位或故障定位。 对于简单的PCB或PCBA,失效的部位很容易确定,但是,对于较为复杂的BGA或MCM封装的器件或基板,缺陷不易通过显微镜观察,一时不易确定,这个时候就需要借助其它手段来确定。 接着就要进行失效机理的分析,即使用各种物理、化学手段分析导致PCB失效或缺陷产生的机理,如虚焊、污染、机械损伤、潮湿应力、介质腐蚀、疲劳损伤、CAF或离子迁移、应力过载等等。 再就是失效原因分析,即基于失效机理与制程过程分析,寻找导致失效机理发生的原因,必要时进行试验验证,一般尽应该可能的进行试验验证,通过试验验证可以找到准确的诱导失效的原因。 这就为下一步的改进提供了有的放矢的依据。最后,就是根据分析过程所获得试验数据、事实与结论,编制失效分析报告,要求报告的事实清楚、逻辑推理严密、条理性强,切忌凭空想象。 分析的过程中,注意使用分析方法应该从简单到复杂、从外到里、从不破坏样品再到使用破坏的基本原则。只有这样,才可以避免丢失关键信息、避免引入新的人为的失效机理。 就好比交通事故,如果事故的一方破坏或逃离了现场,在高明的警察也很难作出准确责任认定,这时的交通法规一般就要求逃离现场者或破坏现场的一方承担全部责任。 [...]

By |9月 20th, 2019|Categories: 技术资讯|0 Comments

2019年中国最全PCB产业链上中下游行业分析

PCB(PrintedCircuitBoard),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,主要由绝缘基材与导体两类材料构成,在电子设备中起到支撑、互连的作用。采用电路板的主要优点是大大减少布线和装配的差错,提高了自动化水平和生产劳动率。 近年来,由于沿海地区劳动力成本、环保要求不断提高等因素的影响,PCB产业正逐步从长三角、珠三角等电子科技发达地区向内地产业条件较好的省市转移。目前,中国已经形成了以珠三角地区、长三角地区为核心区域的PCB产业聚集带。从PCB产业链来看,上游主要包含铜箔、树脂、覆铜板等原材料的生产与加工;中游则是印刷线路板的制造,产品加工;随着印刷电路板应用场景的不断拓展,下游应用产品不断创新。 产业链上游分析 PCB行业上游原材料包括铜箔、树脂、玻璃纤维布、木浆、油墨、铜球等,其中铜箔、树脂和玻璃纤维布是三大主要原材料。一般来说,PCB行业原材料成本占总营业成本50%以上,是对 PCB企业毛利空间影响最大的一部分。 铜箔是制造覆铜板最主要的原材料,约占覆铜板成本的30%(厚板)和50%(薄板)。铜箔的价格取决于铜的价格变化,受国际铜价影响较大。铜箔是一种阴质性电解材料,沉淀于电路板基底层上,它作为PCB的导电体在PCB中起到导电、散热的作用。PCB生产所使用的铜箔主要采用电解法制成,电解铜箔的工艺流程较长,加工要求严格,存在资本和技术壁垒, 产业链中游分析 PCB行业产业链中游主要是各种印刷电路板的制造,产品加工等。随着印刷电路板应用场景的不断拓展,产品不断创新,印刷电路板一般可分为刚性电路板、软性电路板、金属基电路板、HD板和封装基板。 整体来看,单面板、双面板由于不适合目前电子产品进一步轻薄化的趋势,正处于衰退期,其产值比例减小;常规多层板和 HDI [...]

By |9月 20th, 2019|Categories: 新闻中心, 行业资讯|0 Comments

分享PCB线路板外层电路的蚀刻技术

目前,印刷电路板(PCB)加工的典型工艺采用”图形电镀法”。即先在板子外层需保留的铜箔部分上,也就是电路的图形部分上预镀一层铅锡抗蚀层,然后用化 学方式将其余的铜箔腐蚀掉,称为蚀刻。 要注意的是,这时的板子上面有两层铜.在外层蚀刻工艺中仅仅有一层铜是必须被全部蚀刻掉的,其余的将形成最终所需要的电路。这种类型的图形电镀,其特点是镀铜层仅存在于铅锡抗蚀层的下面。另外一种工艺方法是整个板子上都镀铜,感光膜以外的部分仅仅是锡或铅锡抗蚀层。这种工艺称为“全板镀铜工艺“。与图形电镀相比,全板镀铜的最大缺点是板面各处都要镀两次铜而且蚀刻时还必须都把它们腐蚀掉。因此当导线线宽十分精细时将会产生一系列的问题。同时,侧腐蚀会严 重影响线条的均匀性。 在印制板外层电路的加工工艺中,还有另外一种方法,就是用感光膜代替金属镀层做抗蚀层。这种方法非常近似于内层蚀刻工艺,可以参阅内层制作工艺中的蚀刻。 目前,锡或铅锡是最常用的抗蚀层,用在氨性蚀刻剂的蚀刻工艺中。氨性蚀刻剂是普遍使用的化工药液,与锡或铅锡不发生任何化学反应。氨性蚀刻剂主要是指氨水/氯化氨蚀刻液。此外,在市场上还可以买到氨水/硫酸氨蚀刻药液。 以硫酸盐为基的蚀刻药液,使用后,其中的铜可以用电解的方法分离出来,因此能够重复使用。由于它的腐蚀速率较低,一般在实际生产中不多见,但有望用在无氯蚀刻中。有人试验用硫酸-双氧水做蚀刻剂来腐蚀外层图形。由于包括经济和废液处理方面等许多原因,这种工艺尚未在商用的意义上被大量采用。更进一步说:硫酸-双氧水,不能用于铅锡抗蚀层的蚀刻,而这种工艺不是PCB外层制作中的主要方法,故决大多数人很少问津。 二、蚀刻质量及先期存在的问题 对蚀刻质量的基本要求就是能够将除抗蚀层下面以外的所有铜层完全去除干净,止此而已。从严格意义上讲,如果要精确地界定,那么蚀刻质量必须包括导线线宽的一致性和侧蚀程度。由于目前腐蚀液的固有特点,不仅向下而且对左右各方向都产生蚀刻作用,所以侧蚀几乎是不可避免的。 侧蚀问题是蚀刻参数中经常被提出来讨论的一项,它被定义为侧蚀宽度与蚀刻深度之比,称为蚀刻因子。在印刷电路工业中,它的变化范围很宽泛,从1:1到1:5。显然,小的侧蚀度或低的蚀刻因子是最令人满意的。 [...]

By |9月 19th, 2019|Categories: 技术资讯|0 Comments

智慧交通来了,PCB将迎来大爆发

报告称,2018年全球智慧城市市场规模为3080亿美元,预计到2023年这一数字将增长为7172亿美元,2018—2023年这个预测期内的年复合增长率为18.4%。 总体趋势肯定是上扬的,业界很多相关垂直行业公司纷纷与智慧城市挂钩。 此外,公共安全需求、城市人口增加、政府举措增加,将成为促进智慧城市发展三大动力。 怎么理解? 小编认为,安防一直是城市建设重要部分,AI安防开始崛起,人脸识别、生物识别等黑科技开始拥抱传统安防;而人口迁移推动城市化进程,城市规模扩大是必然现象,但城市边界需要合理控制;政府在城建中,更加注重科学合理规划,“把每一寸土地都规划得清清楚楚后再开工”,成为了近期《河北雄安新区总体规划(2018—2035年)》中最亮眼的一句话,这当然也反映了政策从顶层设计上开始注重智慧城市的科学性。 智慧交通运输板块估计占2018年最大市场规模 报告指出,预计在预测期内(也就是2018—2023),智慧交通将以惊人的复合年增长率增长。智慧交通解决方案为现有和新的交通基础设施项目提供了重要的推动力。 不过,MarketsandMarkets也不得不提醒的是:城市人口的暴增和环境问题日益严重。 智慧交通拉动汽车PCB高速增长 汽车已经由过去完全的机械装置演化成了机械与电子相结合,汽车电子在整车制造成本中的占比不断提升,汽车电子的市场规模也在不断扩大。 [...]

By |9月 19th, 2019|Categories: 新闻中心, 行业资讯|0 Comments

PCB设计时,怎样控制线宽与电流的关系?

我们在画PCB时一般都有一个常识,即走大电流的地方用粗线(比如50mil,甚至以上),小电流的信号可以用细线(比如10mil)。 对于某些机电控制系统来说,有时候走线里流过的瞬间电流能够达到100A以上,这样的话比较细的线就肯定会出问题。一个基本的经验值是:10A/平方mm,即横截面积为1平方毫米的走线能安全通过的电流值为10A。如果线宽太细的话,在大电流通过时走线就会烧毁。当然电流烧毁走线也要遵循能量公式:Q=I*I*t,比如对于一个有10A电流的走线来说,突然出现一个100A的电流毛刺,持续时间为us级,那么30mil的导线是肯定能够承受住的。(这时又会出现另外一个问题??导线的杂散电感,这个毛刺将会在这个电感的作用下产生很强的反向电动势,从而有可能损坏其他器件。越细越长的导线杂散电感越大,所以实际中还要综合导线的长度进行考虑) 一般的PCB绘制软件对器件引脚的过孔焊盘铺铜时往往有几种选项:直角辐条,45度角辐条,直铺。他们有何区别呢?新手往往不太在意,随便选一种,美观就行了。其实不然。主要有两点考虑:一是要考虑不能散热太快,二是要考虑过电流能力。 使用直铺的方式特点是焊盘的过电流能力很强,对于大功率回路上的器件引脚一定要使用这种方式。同时它的导热性能也很强,虽然工作起来对器件散热有好处,但是这对于电路板焊接人员却是个难题,因为焊盘散热太快不容易挂锡,常常需要使用更大瓦数的烙铁和更高的焊接温度,降低了生产效率。使用直角辐条和45角辐条会减少引脚与铜箔的接触面积,散热慢,焊起来也就容易多了。所以选择过孔焊盘铺铜的连接方式要根据应用场合,综合过电流能力和散热能力一起考虑,小功率的信号线就不要使用直铺了,而对于通过大电流的焊盘则一定要直铺。至于直角还是45度角就看美观了。 为什么提起这个来了呢?因为前一阵一直在研究一款电机驱动器,这个驱动器中H桥的器件老是烧毁,四五年了都找不到原因。在我的一番辛苦之后终于发现:原来是功率回路中一处器件的焊盘在铺铜时使用了直角辐条的铺铜方式(而且由于铺铜画的不好,实际只出现了两个辐条)。这使得整个功率回路的过电流能力大打折扣。虽然产品在正常使用过程没有任何问题,工作在10A电流的情况下完全正常。但是,当H桥出现短路时,该回路上会出现100A左右的电流,这两根辐条瞬时就烧断了(uS级)。然后呢,功率回路变成了断路,储藏在电机上的能量没有泻放通道就通过一切可能的途径散发出去,这股能量会烧毁测流电阻及相关的运放器件,击毁桥路控制芯片,并窜入数字电路部分的信号与电源中,造成整个设备的严重损毁。整个过程就像用一根头发丝引爆了一个大地雷一样惊心动魄。那么你可能要问了,为什么在功率回路中的焊盘上只使用了两个辐条呢?为什么不让铜箔直铺过去呢?因为,呵呵,生产部门的人员说那样的话这个引脚太难焊了!设计者正是听了生产人员的话,所以才...唉唉,发现这个问题可着实费了我一番脑筋啊,哪像说起来这么简单!苦乐自知,苦乐自知... via的孔如果小于0.3mm的话就没有办法使用机械钻孔了,要使用激光钻孔,板的生产加工难度增大。所以我个人的想法是如果不是非常需要 最小为0.5mm外/0.3mm内。。但是像计算机主板 、内存条、密集的BGA封装等等,有时候可能小到14mil/8mil。。我个人的想法是孔内径的大小 一般为线宽的1.5倍,当然特殊的加粗的线(例如电源等)不需要这样。

By |9月 18th, 2019|Categories: 技术资讯|0 Comments

学会这六大技巧,PCB原理图传递到版图简直小case!

将PCB原理图传递给版图(layout)设计时需要考虑的六件事。提到的所有例子都是用Multisim设计环境开发的,不过在使用不同的EDA工具时相同的概念同样适用哦! 初始原理图传递 通过网表文件将原理图传递到版图环境的过程中还会传递器件信息、网表、版图信息和初始的走线宽度设置。 下面是为版图设计阶段准备的一些推荐步骤: 1.将栅格和单位设置为合适的值。为了对元器件和走线实现更加精细的布局控制,可以将器件栅格、敷铜栅格、过孔栅格和SMD栅格设计为1mil. 2.将电路板外框空白区和过孔设成要求的值。PCB制造商对盲孔和埋孔设置可能有特定的最小值或标称推荐值。 3.根据PCB制造商能力设置相应的焊盘/过孔参数。大多数PCB制造商都能支持钻孔直径为10mil和焊盘直径为20mil的较小过孔。 4.根据要求设置设计规则。 5.为常用层设置定制的快捷键,以便在布线时能快速切换层(和创建过孔)。 处理原理图传递过程中的错误 [...]

By |9月 17th, 2019|Categories: 技术资讯|0 Comments