技术资讯

主页/技术资讯
技术资讯2019-09-11T15:44:08+08:00

PCB技术

技术文章—教你如何设计不规则形状PCB

我们预想中的完整 PCB 通常都是规整的矩形形状。虽然大多数设计确实是矩形的,但是很多设计都需要不规则形状的电路板,而这类形状往往不太容易设计。本文介绍了如何设计不规则形状的 PCB。 如今,PCB 的尺寸在不断缩小,而电路板中的功能也越来越多,再加上时钟速度的提高,设计也就变得愈加复杂了。那么,让我们来看看该如何处理形状更为复杂的电路板。 简单 PCI 电路板外形可以很容易地在大多数 EDA [...]

教你利用PCB分层堆叠控制EMI辐射

解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。 电源汇流排 在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由於电容呈有限频率响应的特性,这使得电容无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要的共模EMI干扰源。我们应该怎么解决这些问题? 就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。当然,电源层到IC电源引脚的连线必须尽可能短,因为数位信号的上升沿越来越快,最好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。为了控制共模EMI,电源层要有助於去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。有人可能会问,好到什么程度才算好?问题的答案取决於电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等效电容约为75pF。 显然,层间距越小电容越大。上升时间为100到300ps的器件并不多,但是按照目前IC的发展速度,上升时间在100到300ps范围的器件将占有很高的比例。对於100到300ps上升时间的电路,3mil层间距对大多数应用将不再适用。那时,有必要采用层间距小於1mil的分层技术,并用介电常数很高的材料代替FR4介电材料。现在,陶瓷和加陶塑料可以满足100到300ps上升时间电路的设计要求。尽管未来可能会采用新材料和新方法,但对於今天常见的1到3ns上升时间电路、3到6mil层间距和FR4介电材料,通常足够处理高端谐波并使瞬态信号足够低,就是说,共模EMI可以降得很低。本文给出的PCB分层堆叠设计实例将假定层间距为3到6mil。 电磁屏蔽从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨著电源层或接地层。对於电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层"策略。 PCB堆叠什么样的堆叠策略有助於屏蔽和抑制EMI?以下分层堆叠方案假定电源电流在单一层上流动,单电压或多电压分布在同一层的不同部份。多电源层的情形稍后讨论。 4层板 4层板设计存在若干潜在问题。首先,传统的厚度为62mil的四层板,即使信号层在外层,电源和接地层在内层,电源层与接地层的间距仍然过大。 如果成本要求是第一位的,可以考虑以下两种传统4层板的替代方案。这两个方案都能改善EMI抑制的性能,但只适用於板上元件密度足够低和元件周围有足够面积(放置所要求的电源覆铜层)的场合。第一种为首选方案,PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也低。从EMI控制的角度看,这是现有的最佳4层PCB结构。第二种方案的外层走电源和地,中间两层走信号。该方案相对传统4层板来说,改进要小一些,层间阻抗和传统的4层板一样欠佳。如果要控制走线阻抗,上述堆叠方案都要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜岛之间应尽可能地互连在一起,以确保DC和低频的连接性。 [...]

教你通过颜色判断PCB表面工艺

手机和电脑的电路板里,有金有铜。所以废旧电路板的回收价格,可达每公斤30块钱以上。比卖废纸、玻璃瓶、废铁都要贵上不少。 单从外面看,电路板的外层主要有三种颜色:金色、银色、浅红色。金色最贵,银色的便宜,浅红色的最便宜。 从颜色上就可以看出来,硬件厂家有没有偷工减料, 另外,电路板内部的线路主要是纯铜,如果暴露在空气中很容易被氧化,外层必须要有上述保护层。有些人说金黄色的是铜,那是不对的。 电路板上的大面积镀金 金色的最贵,是真正的黄金。虽然只有薄薄的一层,但也占了电路板成本的近10%。广东和福建沿海有些地方专门收购废旧电路板,把黄金剥下来,利润很可观。 之所以用黄金,有两个目的,一是为了方便焊接,二是为了防腐蚀。 下面那张8年前的内存条的金手指,依然是金光闪闪的,如果换做铜、铝、铁,早就锈的不能用了。 镀金层大量应用在电路板的元器件焊盘、金手指、连接器弹片等位置。 如果你发现某些电路板上全是银色的,那一定是偷工减料了。业内术语叫做“costdown”。 [...]

PCB焊盘的处理方式及FPC材料的使用

FPC柔性印刷电路是一种在柔性切割表面上制作的电路形式,可以覆盖或不覆盖(通常用于保护FPC电路)。由于FPC可以各种方式弯曲,折叠或重复移动,因此它的使用越来越广泛。 FPC的基膜通常由聚酰亚胺(聚酰亚胺,PI)制成(简称)和聚酯。 (涤纶,简称PET),材料厚度为12.5/25/50/75/125um,常用12.5和25um。如果FPC需要在高温下焊接,则材料通常由PI制成,PCB的基板通常为FR4。 FPC的覆盖层由电介质薄膜和胶水薄膜或柔性介质涂层制成,可防止污染,潮湿,划痕等,主要材料与基材相同,即聚酰亚胺。胺(聚酰亚胺)和聚酯(涤纶),常用材料厚度为12.5um。 FPC设计需要将各层粘合在一起,此时需要使用FPC胶(胶粘剂)。柔性板通常用于丙烯酸,改性环氧树脂,酚醛缩丁醛,增强塑料,压敏粘合剂等,而单层FPC不使用胶粘剂粘合。 在许多应用中,例如焊接器件,柔性板需要加强件以获得外部支撑。主要材料有PI或聚酯薄膜,玻璃纤维,高分子材料,钢板,铝板等。 PI或聚酯薄膜是柔性板增强的常用材料,厚度一般为125um。玻璃纤维(FR4)增强板的硬度高于PI或聚酯,并用于较硬的地方。 有多种方法可以处理FPC的焊盘相对于PCB焊盘的处理方式。以下是常见的: 1、化学镍金也被称为化学浸金或浸金。通常,PCB的铜金属表面上使用的化学镀镍层的厚度为2.5um-5.0um,浸金(99.9%纯金)层的厚度为0.05um-0.1um(之前为PCB)工厂工人使用替换方法替换pcb池中的金币。技术优势:表面光滑,储存时间长,易焊接;适用于细间距元件和更薄的PCB。对于FPC,它更合适,因为它更薄。缺点:不环保。 2、锡铅电镀优点:可直接在焊盘上添加扁铅锡,具有良好的可焊性和均匀性。对于某些处理过程(如HOTBAR),必须在FPC上使用此方法。缺点:铅易氧化,储存时间短;需要拉电镀线;不环保。 [...]

PCB设计中过孔常用的处理方式

电路板系统的互连包括:芯片到电路板、PCB板内互连以及PCB与外部器件之间的三类互连。在RF设计中,互连点处的电磁特性是工程设计面临的主要问题之一,本文介绍上述三类互连设计的各种技巧,内容涉及器件安装方法、布线的隔离以及减少引线电感的措施等等。 目前有迹象表明,印刷电路板设计的频率越来越高。随着速率的不断增长,传送所要求的带宽也促使信号频率上限达到1GHz,甚至更高。这种高频信号技术虽然远远超出毫米波技术范围(30GHz),但的确也涉及RF和低端微波技术。 RF工程设计方法必须能够处理在较高频段处通常会产生的较强电磁场效应。这些电磁场能在相邻信号线或PCB线上感生信号,导致令人讨厌的串扰(干扰及总噪声),并且会损害系统性能。回损主要是由阻抗失配造成,对信号产生的影响如加性噪声和干扰产生的影响一样。 高回损有两种负面效应: 1、信号反射回信号源会增加系统噪声,使接收机更加难以将噪声和信号区分开来; 2、任何反射信号基本上都会使信号质量降低,因为输入信号的形状出现了变化。 尽管由于数字系统只处理1和0信号并具有非常好的容错性,但是高速脉冲上升时产生的谐波会导致频率越高信号越弱。尽管前向纠错技术可以消除一些负面效应,但是系统的部分带宽用于传输冗余,从而导致系统性能的降低。一个较好的解决方案是让RF效应有助于而非有损于信号的完整性。建议数字系统最高频率处(通常是较差点)的回损总值为-25dB,相当于VSWR为1.1。 PCB设计的目标是更小、更快和成本更低。对于RFPCB而言,高速信号有时会限制PCB设计的小型化。目前,解决串扰问题的主要方法是进行接地层管理,在布线之间进行间隔和降低引线电感(studcapacitance)。降低回损的主要方法是进行阻抗匹配。此方法包括对绝缘材料的有效管理以及对有源信号线和地线进行隔离,尤其在状态发生跳变的信号线和地之间更要进行间隔。 由于互连点是电路链上最为薄弱的环节,在RF设计中,互连点处的电磁性质是工程设计面临的主要问题,要考察每个互连点并解决存在的问题。电路板系统的互连包括芯片到电路板、PCB板内互连以及PCB与外部装置之间信号输入/输出等三类互连。 一、芯片到PCB板间的互连 [...]

PCB设计中防止串扰的方法不止3W规则

串扰(CrossTalk)是指PCB上不同网络之间因较长的平行布线引起的相互干扰,主要是由于平行线间的分布电容和分布电感的作用。克服串扰的主要措施有: 加大平行布线的间距,遵循3W规则。 在平行线间插入接地的隔离线。 减小布线层与地平面的距离。 3W规则 为了减少线间串扰,应保证线间距足够大,当线中心间距不少于3倍线宽时,则可保持70%的电场不互相干扰,称为3W规则。如要达到98%的电场不互相干扰,可使用10W的间距。 实际PCB设计中,3W规则并不能完全满足避免串扰的要求。 按实践经验,如果没有屏蔽地线的话,印制信号线之间大于lcm以上的距离才能很好地防止串扰,因此在PCB线路布线时,就需要在噪声源信号(如时钟走线)与非噪声源信号线之间,及受EFTlB、ESD等干扰的“脏“线与需要保护的“干净”线之间,不但要强制使用3W规则,而且还要进行屏蔽地线包地处理,以防止串扰的发生。 此外,为避免PCB中出现串扰,也应该从PCB设计和布局方面来考虑,例如: 1.根据功能分类逻辑器件系列,保持总线结构被严格控制。 [...]

PCB设计中过孔常用的处理方式

过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区,这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设计者总是希望过孔越小越好,这样板上可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。 因此综合设计与生产,我们需要考虑以下问题: 1、全通过孔内径原则上要求0.2mm(8mil)及以上,外径的是0.4mm(16mil)以上,有困难地方必须控制在外径为0.35mm(14mil); 按照经验PCB常用过孔尺寸的内径和外径的大小一般遵循X*2±2mil(X表示内径大小)。比如8mil内径大小的过孔可以设计成8/14mil、8/16mil或者8/18mil;比如12mil的过孔可以设计为12/22mil、12/24mil、12/26mil; 2、BGA在0.65mm及以上的设计建议不要用到埋盲孔,成本会大幅度增加。用到埋盲孔的时候一般采用一阶盲孔即可(TOP层-L2层或BOTTOM-负L2),过孔内径一般为0.1mm(4mil),外径为0.25mm(10mil) 3、过孔不能放置在小于0402电阻容焊盘大小的焊盘上;理论上放置在焊盘上引线电感小,但是生产的时候,锡膏容易进去过孔,造成锡膏不均匀造成器件立起来的现象(‘立碑’现象)。一般推荐间距为4-8mil1、过孔与过孔之间的间距不宜过近,钻孔容易引起破孔,一般要求孔间距0.5mm及以上,0.35mm-0.4mm极力避免,0.3mm及以下禁止

如何解决软硬结合板的涨缩问题

涨缩产生的根源由材料的特性所决定,要解决软硬结合板涨缩的问题,必须先对挠性板的材料聚酰亚胺(Polyimide)做个介绍: (1)聚酰亚胺具有优良的散热性能,可承受无铅焊接高温处理时的热冲击; (2)对于需要更强调讯号完整性的小型装置,大部份设备制造商都趋向于使用挠性电路; (3)聚酰亚胺具有较高的玻璃转移温度与高熔点的特性,一般情况下要在350 ℃以上进行加工; (4)在有机溶解方面,聚酰亚胺不溶解于一般的有机溶剂。 挠性板材料的涨缩主要跟基体材料PI和胶有关系,也就是与PI的亚胺化有很大关系,亚胺化程度越高,涨缩的可控性就越强。 按照正常的生产规律,挠性板在开料后,在图形线路形成,以及软硬结合压合的过程中均会产生不同程度的涨缩,在图形线路蚀刻后,线路的密集程度与走向,会导致整个板面应力重新取向,最终导致板面出现一般规律性的涨缩变化;在软硬结合压合的过程中,由于表面覆盖膜与基体材料PI的涨缩系数不一致,也会在一定范围内产生一定程度的涨缩。 从本质原因上说,任何材料的涨缩都是受温度的影响所导致的,在PCB冗长的制作过程中,材料经过诸多 热湿制程后,涨缩值都会有不同程度的细微变化,但就长期的实际生产经验来看,变化还是有规律的。 [...]