行业新闻
PCB冲孔常见的十大瑕疵_PCB冲孔有瑕疵的解决方法
随着电子装联技术质量的提高以及市场的竞争需要,全自动插装机得到迅速普及。这样对单面PCB纸基板材冲孔质量(少数单双面非金属化孔环氧-玻璃布基板也采用冲孔)的要求也就越来越高。就目前生产应用于全自动插装机的PCB厂家,有关冲孔质量引起的投诉及退货率已上升到第一位。本文主要介绍了PCB冲孔常见的十大瑕疵以及解决办法,分别有毛刺、铜箔面孔口周围凸起、孔口铜泊向上翻起、基板面孔口周围分层泛白、孔壁倾斜和偏位、断面粗糙、孔之孔与间裂纹、 外形鼓胀、废料上跳及废料堵塞等,具体的跟随小编一起来了解一下。 一、毛刺 产生原因 凹、凸模间隙过小,造成在凸模和凹模两侧产生裂纹而不重合,断面两端发生两次挤压剪切。 凹、凸模间隙过大,当凸模下降时,裂纹发生晚,像撕裂那样完成剪切,造成裂纹不重合。 刃口磨损或出现圆角与倒角,刃口未起到楔子的分割作用,整个断面产生不规则的撕裂。 解决方法 合理选择凹、凸模的冲裁间隙。这样的冲裁剪切介于挤压和拉伸之间,当凸模切入材料时,刃口部形成楔子,使板材产生近于直线形的重合裂纹。 及时对凹、凸模刃口所产生的圆角或倒角进行整修。 [...]
各种减小印制电路板边缘辐射效应的方法和技术
随着电子设备向小型化和更高数率的方向发展,由此带来的是组件之间的间距越来越小、波长不断缩短。当波长缩短到接近组件和设备的物理尺寸时,这将导致噪声的“天线效应”增大。因此,防止噪声耦合到这些能辐射或产生耦合场的“天线”结构上变得更加重要,因为在更高的频率上,采用低成本的方式来实现对产品的电磁防护也变得更为困难。 同时,较小的波长会接近许多受试设备(EUTs)的物理尺寸,导致发生腔体的共振效应。当闭合体尺寸等于半波长的整数倍时,对应频率就是一谐振频率。在机箱内产生的波,其波节点(即零振幅)位于外壳的导电壁上。此结构就起到了腔体谐振器的作用。例如,一个2英寸见方乘1/2英寸的金属腔体其一阶模的谐振频率在12 GHz左右。在这些非常高的频率,即使是弱耦合也可以激励起强烈的振荡,然后场可以耦合到腔体内的任何其他点或可以产生辐射。腔体谐振的危险是,如果一个噪声源含有对应谐振频点的频率成分,由于以腔体“Q-因数”产生的乘积或放大效应,那么在谐振频率上会激励起很强的场。减弱该现象的一种方法是通过能损耗能量(Q-抑制)的措施来降低腔体的“Q-因数”,通常做法是在腔体内安放吸收材料。 减少印刷电路板(PCB)的边缘散射 通过恰当地运用PCB设计技术,如走线布线,层叠分配,解耦和端接,由印刷电路板本身产生的辐射可以达到最小。然而,印刷电路板组件仍然存在其它几个能成为辐射源的机制。这些机制包括组件本身,功率/信号回流层的腔体谐振效应以及印刷电路板的边缘。边缘效应是很严重的问题,因为电路板边缘非常靠近机箱壳体,因此产生的辐射场可以在机箱结构框架上激励起电流。 有大量的研究,分析讨论了各种减小印制电路板边缘辐射效应的方法和技术,如适当端接技术。随这些技术应用而产生的一个问题是,可能需要增加额外的组件并占用宝贵的PCB板空间,且实际效果往往并没有减小辐射能量。而这些常用方法会产生能量反射,从而有可能产生附加的内部谐振效应和内部的通孔耦合,这会导致辐射增强。 采用微波吸收材料沿印刷电路板的边缘进行铺设,这可以减小由边缘引起的边缘辐射,且不需要额外占用电路板的面积。通过消耗能量不让能量反射回电路板,吸波材料也能降低出现电路板谐振问题的可能性。吸波材料可以通过在电路板的边缘开U型槽固定。 减少PCB板的走线辐射 将吸波材料直接放置在微带线的上部可消除从走线上边往外的场辐射。如果走线位于电路板的底层且临近机箱壳体的底板,会出现一个特别棘手的耦合机制,如果走线位置板靠近外壳的底面。此时,耦合到机箱上的场将激励起电流,电流流到机箱内部并形成循环电流。然后,这些循环电流会通过其所流经路径上的任何开槽,接缝或孔径产生辐射。将吸波材料用压敏胶(PSA)粘在走线上就能减小耦合到机箱上的场。这样放置吸波材料对走线的阻抗影响极小,因为吸波材料具有高阻抗特性(大于10Ω)。吸波材料也可以方便地直接放置在走线的顶部,不需要采用任何额外的安装或机械紧固措施。这个方法已使用在一个开关箱上,频率在6GHz时,可降低约4~6dB的辐射发射。 降低腔体谐振效应 [...]
国内PCB厂商如何在“黄金时代”的洗牌中持续前行?
在环保限排和各地方园区又不待见的情况下,以深圳为中心的泛珠三角地区PCB厂商去年开始大规模迁移;再加之从2018年1月1日起开始施行《环保税》,PCB厂要根据其排污、排气的具体情况增交税收,其中废水、废气排放费用增加3-5倍,甚至更多,运营成本大幅增加。 受此影响,不少珠三角PCB开始倒闭或被收购,此外,不少小规模PCB厂商环保投入不足,资本渠道又不通畅,正面临被收购的局面。 在这一态势下,中小PCB厂商开始被迫退出市场竞争,PCB大厂商则通过扩建,实现产能转移。其中就包括深南电路逾20亿元电路板项目于南通开始投产;广东骏亚投资19亿元在珠海建设PCB项目;明阳电路超6亿元投资九江印制电路板生产基地扩产建设项目…… 再加之,整个下游终端市场也开始涌现的新需求,带动PCB产品的发展开始趋于高端,整个行业已经步入产业汰换整合阶段,国内市场份额又在持续提升。根据行业数据显示,2016年全球PCB产值在600亿美金左右,预计未来几年全球PCB产值会达到700亿美元,加之本土制造产业的支撑,国内PCB厂商会陆续抢占美日韩及台湾的市场份额,会迎来黄金发展期。 “未来全球70%的PCB产值会来自中国,当前这个时机,是国内PCB产业发展的最好时机。”行业资深人士表示,PCB市场空间持续加大的情况也正推动着行业巨头们开始进入新一波的成长期,整个PCB行业正朝着“大者恒大、强者愈强”的轨迹发展。 而在PCB行业洗牌之际,国内PCB厂商在移动终端、车载、IoT等市场的全面带动,正迎来新一轮的成长机遇;同时这将对PCB产品的性能、技术、质量等方面提出了更高的要求。未来国内PCB厂商一方面需要为终端客户提供更优质的服务;一方面需要通过资本市场的力量提升融资渠道,加强供应链管理,改进工艺,重视低污染的环保问题,才能在这一轮“黄金时代”的PCB产业洗牌中持续前行。
4种去除阻焊膜的方法
阻焊膜一种耐热的涂覆材料,施加在选定的区域,以防止后续焊接期间,焊料沉积于此。阻焊膜材料可以是液态,或是干膜。两种类型都要符合本规定的要求。虽未评价其绝缘强度,而且按照“绝缘物”或“绝缘材料”的定义其性能未必令人满意,但某些阻焊膜配方还是具有一定的绝缘性,并在不考虑高电压情况的场合常被用做表面绝缘物。另外,阻焊膜对于防止PCB在组装操作中的表面损伤是很有效的。 测试点、接地焊盘或者甚至是组件引脚不小心沾上了阻焊膜,这些都是再平常不过的事情。然而,并不意味着这些板肯定报废,有几种既安全又可靠的方法可以用来去除电路板表面的阻焊膜:刮磨、铣削、微研磨及化学脱膜是最常用的方法,其各有优缺点,本文将对这几种方法进行简单的比较。 有几个因素对于决定采用何种方式来去除涂层是很有帮助的。是什么类型的阻焊膜?阻焊膜在电路板表面的什么位置?需去除的阻焊膜面积有多大?电路板是组装好的还是裸板?在确定最适合的去除方法之前,必须对这些因素和其它一些因素进行评估。 刮磨 该方法并无奇特之处,只是噪声较大。通常是一个熟练的技师手持一把小刀、刮刀或者凿子即可,从不需要的区域去除阻焊膜,这种技术最容易控制,不需特殊的设置,但有个缺点是去除面积较大时,操作者会感到疲劳。像绘图员使用的那种类型的机械擦除器,能够加快处理进程。该技术容易控制,但讲求方法,常用于去除薄阻焊膜层。可将这种方法与其它去除方法配合使用作为最后一道的表面处理步骤。 铣削 你使用过铣床去除阻焊膜吗?看起来很极端,但却是一种非常有效和精确的去除阻焊膜的方法。由于使用锋利的铣刀,必须控制深度精度,该铣削系统需配备一个显微镜辅助目视。 碳化物立式铣刀是最常用的刀具类型,因为碳化物立式铣刀十分锋利,其可轻易地进入涂层并且可以触及板的表面。从相反的方向来回转动铣刀是控制深度的一种有效方法,而操作者的技能和经验就显得尤为重要。 化学脱膜 该方法是去除铜表面或焊后表面上阻焊膜的最有效方法。应该将护具或其它保护材料安置在电路板表面以隔离要脱膜的区域,然后,就用刷子或者棉签施加化学脱膜剂。由于脱膜剂是液体的,所以常常很难控制。该化学药剂就像脱漆剂一样会侵蚀并分解涂层。化学脱膜剂普遍含有二氯甲烷,是一种强效溶剂。基于二氯甲烷的脱膜剂不仅能迅速地去除阻焊膜,如果拖延的时间过长会腐蚀基材。由于上述原因使用化学脱膜剂的时候必须十分小心,并只在其它替代方法成本太高或者太耗时间的情况下才使用这种方法。 [...]
汽车电子孕育pcb双面线路板新蓝海
纵观全球,欧美国家通过强制法规提高汽车的节能减排和安全性能,消费电子的兴起促使消费者对汽车的通讯娱乐功能的要求逐步增高,这些都会使得汽车制造商对于电子产品的需求不断增长。2012年至2016年在安全控制领域会有10.2%的复合成长率,其它领域也将会有8.9%的复合成长率。 汽车产业未来的两大趋势是自动驾驶和新能源汽车。汽车进入自动化时代,汽车电子化是重要趋势,而新能源汽车更是汽车电子化的代表。2015年,全球汽车总销量小幅上涨1%,达9,165万辆,其中电动车销售约在45.5万辆,2016年有机会达到70万辆,增长一半,远高于整体汽车的增幅。而2015年中国电动车销售17.11万辆,首次超越美国的11.65万辆成为全球电动车大国。中国已将发展新能源汽车列入「中国制造2025」的十大重点,除本土车厂努力研发电动车外,互联网公司也纷纷试水,国内相关的电动车供应链厂商有机会在中国推广电动车的政策中取得一席之。 汽车电子的蓬勃发展,PCB行业呈现出一派生机,PCB在汽车电子中应用广泛,动力控制系统、安全控制系统、车身电子系统、娱乐通讯这四大系统中均有涉及,因此对于 PCB 的要求是多元化的,量大价低的产品与高可靠性的需求并存:在车用 PCB 中单双面板、4 层板、6 层板、8-16层板占比分别为 26.93%、25.70%、17.37%、3.49%,合计占比约 [...]
如何解决软硬结合板的涨缩问题
涨缩产生的根源由材料的特性所决定,要解决软硬结合板涨缩的问题,必须先对挠性板的材料聚酰亚胺(Polyimide)做个介绍: (1)聚酰亚胺具有优良的散热性能,可承受无铅焊接高温处理时的热冲击; (2)对于需要更强调讯号完整性的小型装置,大部份设备制造商都趋向于使用挠性电路; (3)聚酰亚胺具有较高的玻璃转移温度与高熔点的特性,一般情况下要在350 ℃以上进行加工; (4)在有机溶解方面,聚酰亚胺不溶解于一般的有机溶剂。 挠性板材料的涨缩主要跟基体材料PI和胶有关系,也就是与PI的亚胺化有很大关系,亚胺化程度越高,涨缩的可控性就越强。 按照正常的生产规律,挠性板在开料后,在图形线路形成,以及软硬结合压合的过程中均会产生不同程度的涨缩,在图形线路蚀刻后,线路的密集程度与走向,会导致整个板面应力重新取向,最终导致板面出现一般规律性的涨缩变化;在软硬结合压合的过程中,由于表面覆盖膜与基体材料PI的涨缩系数不一致,也会在一定范围内产生一定程度的涨缩。 从本质原因上说,任何材料的涨缩都是受温度的影响所导致的,在PCB冗长的制作过程中,材料经过诸多 热湿制程后,涨缩值都会有不同程度的细微变化,但就长期的实际生产经验来看,变化还是有规律的。 [...]